
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 15, PP. 1903-1909 (1971) 

Bead-Spring Model of Dilute Polymer Solutions: 
Continuum Modifications and an Explicit 

Constitutive Equation 

R. J .  GORDON and A. E. EVERAGE, JR., Department of 
Chemical Engineering, University of Florida, Gainesville, Florida 32601 

S J nopsis 
A continuum modification of the bead-spring (elastic dumbbell) theory of dilute solu- 

tions of linear macromolecules, recently introduced by Gordon and Schowalter, is used to 
obtain explicit constitutive equations for the stress and polarieability tensors. The stress 
constitutive equation, closely related to a semiempirical result obtained earlier by Spriggs, 
is superior in predictive capability to the constitutive equation obtained from the elastic 
dumbbell theory. Results are presented for steady shearing flow, large-amplitude oscil- 
latory shearing, and stress relaxation following cessation of steady shearing and are com- 
pared with the results of the elastic and rigid dumbbell theories. In general, predictions 
are similar to those of the rigid dumbbell and thus are in qualitative agreement with ex- 
periment. 

INTRODUCTION 
The elastic dumbbell theory of dilute solutions of linear macromolecules 

leads to the following expressions for the stress and polarizability tensors*-3 

'5 = - ( p  +g k T )  6 + 2q,D + 37 NC - (rr) 
M 

- Nc 
P = po6 + 3p (rr) 

where N = Avogadro's number, c = concentration of polymer (assumed 
monodisperse), M = polymer molecular weight, q s  = solvent viscosity, k = 
Boltzmann's constant, T = absolute temperature, y = 2kTbz/3,  p" = 
2(a1 - cu2)b2/ 15, b2 = 3/2n12, I = fixed length of link in (equivalent) random 
flight chain,4 n = number of links in random flight chain, (a1, (YZ) = polar- 
izability of link along and normal to  link axis, D = ('/2)(Vv + Vvt) ,  v = 
velocity, and r is the end-to-end vector of the molecule. 

This equation is 
obtained by calculating the contribution to the stress vector on a plane, due 
to the tension in the polymers cut by that plane. 

A few words are in order on the derivation of eq. (1). 

One obtains'~~ 

3yNc 
q P  = __- (rr). 

M (3) 
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The stress being undetermined up to  an arbitrary isotropic pressure, we 
are free to write eq. (3) as 

Nc N c  
M ill 

sp = 37 - (rr) - - kT6, (4) 

and thus a t  rest, with (rr) = (kT/37)S4,  cp = 0 and c = - p 6 .  This is more 
in keeping with the usual definition of the pressure, p. 

Bird and co-workers' have pointed out that in the calculation of T~ (the 
contribution of the macromolecules to  the total stress s) ,  one must take into 
account the polymer momentum flux. They thus obtain 

37Nc Nc 
sp = __ (rr) - 2 1~1'6, M 

which is identical with eq. (4). 

ing the flow field of interest, one must first evaluate (rr), where 
To obtain explicit expressions for c and P, in terms of parameters describ- 

(rr) = J-mmJ:aJ:m rr+drldr2dr3. (5) 

The distribution function 9 is obtained from the diffusion equation'P2 

once an expression for f is given. 
forms the central problem in the theory. 

The development of such an expression 

EQUATION OF MOTION FOR r 

I n  the elastic dumbbell theory, the rate of change of r is found to be'.2 

where 5 is a frictional coefficient (equal to  one half the frictional coefficient 
in reference 1). Equation (7) leads to unrealistic predictions for the vis- 
cosity and normal stress differences.'s6 Gordon and Schowalter (GS)5*6 
have obtained an alternative expression for i, using a modification of Erick- 
sen's structured fluid theory': 

i = Vvar - aD-r - ar (8) 

where E and u are phenomenological constants. A detailed discussion of the 
derivation of eq. (S) hm been given p rev io~s ly .~ -~  If desired, one could look 
upon this result simply as a semiempirical modification of the dumbbell 
model. Equation (8) yields expressions for the viscosity arid normal stress 
differences in signiificantly better qu:ilitntivc ngrc.ement with expcriment 
than those of eq. (7) (see below). 
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AN EXPLICIT CONSTITUTIVE EQUATION 

Using techniques clearly laid out by Bird and co-workers,l eqs. (l), (5), 
(6)) and (8) may be used to obtain the followTing expression for 2, = z - 
27.B + ~ 6 :  

In obtaining this result we have used D = kT/{'J and have assumed n = 
2kTb2/{,  as suggested by eqs. (7) and (8); 0 is equal to  {/4b2kT. 

For the elastic dumbbell model one finds' 

Dz, Nc 
at M 

z p  + e __ = 2 - kTeD 

+ v.v2, - vv.2, - 2,.vvt. 3 7 ,  - as, 
sT at 
- 

If desired, analogous expressions for P may easily be obtained by use of 
the identity 

RESULTS 
Here we compare the predictions of eqs. (9) and (11) for simple shearing 

flow, large amplitude oscillatory shearing, and stress relaxation following 
cessation of steady shearing. Results for an arbitrary steady homogeneous 
shear field may be found in Gordon and Schowalters; these were obtained 
by direct evaluation of (rr). 

Simple Shearing Flow 

The velocity field has the form 

21, = (Gz~,  0,O). (14) 
Evaluation of eqs. (9) and (11) leads to the follo\ving results: 

Elastic DB, 
Eq. (9) eq. (11) 

2mkT(1 - .)p 
1 + e(2 - .)p 

-nokTs(l - .)pz 
1 + e(2 - .)p 

Primary normal stress, 
N 1 3  711 - 722 

Secondary normal stress, 
Nz 722 - 733 0 
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/3 is the generalized shear rate BG8, and q = Nc/M is the number of mac- 
romolecules per unit volume. For the three material functions, the predic- 
tions of eq. (9) are in qualitative agreement with experiment's6; those of 
eq. (11) are not. For 7 to be a decreasing function of p, we require6 

O < e < l .  (15) 
It is interesting to note that the results of the rigid dumbbell model,' viz., 

1 18 1326 
rl = v,+n&TO[l - spz+ - p 4 -  1925 . . .  

and 

are much closer to those of eq. (9). Expanding q and N1 about p2, we find 

11 = q s  + %kTO(l - e ) [ l  - "(2 - €)p2 + ~ ' ( 2  - t)'P4 - . . . ] 
and 

N1 = 2%kT(1 - ~)j9[1 - 4 2  - c)/Y + . . .]. 
The rigid dumbbell model predicts that NZ = 0; recent experiments on 
nondilute solutions indicate that Na is n e g a t i ~ e , ~ , ' ~  in agreement with the 
predictions of our model. 

Large- Amplitude 0 scillator y Shearing18 11 

For this flow the velocity field is of the form 

vi = (Re( voeiwt] ,o,o) (16) 
where vo is a complex amplitude. From eq. (9), a set of coupled, ordinary 
differential equations is obtained (for convenience, the p subscript on r has 
been deleted) : 

NC 
M 

= - kTO(1 - r)Re(K,,eiwtf 

and 

a733 

at 
r 3 3 + e -  = o  
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where 

dtjo 
K g  = -. 

dxz 

We desire an expression for the complex viscosity, q* = q' - iq", defined 
such that 

712 = Re( q*Koei"'} (18) 

where 712 is assumed to be of the form Re( 7120eiwt} , with 7'4 = 7 1 2 O ( ~ 0 , 0 )  a 
complex amplitude. Using eqs. (17) and (18), we find 

% w e ( i  - e ) [ i  + 4(e0)2 + cllKo12] 

(1 + (ew)2)>(l  + 

GlcTeyi - 

+ 4c1(Kol2) + 3 ~ ~ ~ 1 ~ ~ 1 ~  
q' = 7s + 

and 

+ 4(ew)2 - 2cllK0(~] q" = 
[I -k (eU)'][l -k 4(8W)2 + 4Ci(K01~] -k 3ci21Ko(4 

with 
8242 - €> 

4 
c1 = 

Note that q* depends on ( ~ ~ 1 ;  as 1 ~ ~ 1  increases, 7'' decreases more rapidly 
than 9'. Both effects have been observed experimentally." 

I n  the limit of small 1 ~ 0 1 ,  q' and q" reduce to the small-amplitude results 
obtained previously by Gordon and Schowalter.6 The elastic dumbbell 
model does not show a dependence of q* on I K ~ I  ; on the other hand, the rigid 
dumbbell model does predict such a phenomenon. ',11 

Stress Relaxation Following Cessation of Steady ShearinglJz 

For this flow, the fluid undergoes steady shearing up to time t = 0. At t 
= 0, the motion is suddenly stopped, and the shear and normal stresses 
gradually decrease to zero. We find, from eq. (9), for t 2 0 that 

~ k T ( 1  - e ) P  e - t , e  

= 1 + e ( 2  - e ) P 2  

--n~kT(l - e ) P 2  

1 + e(2 - € ) P 2  
N2 = e .  

The rate of relaxation is seen to be independent of shear rate, as predicted 
by the elastic dumbbell model. However, experiments indicate that this 
rate is, in general, a strong function of G ,  as is predicted by the rigid dumb- 
bell model.' Our feeling is that to predict such an effect within the pres- 
ent framework, one must go to  a multispring (Zimm)I3 model, with a 
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large number of relaxation times. This is suggested by the comparison of 
eq. (9) with the Spriggs model (see below). 

RELATION TO SPRIGGS MODEL 

Spriggs proposed a semiempirical constitutive equation which has been 
quite successful in correlating experimental results for several polymer solu- 
t ion~.“-’~ His equation may be written in the form 

with 

The derivatives &/Dt and &/at only differ by the term 2/3(1 - e)tr- 
(z.D)S, which appears to have little or no effect on the predictions of the 
model. Our eq. (9) is thus equivalent to a Spriggs model with a single relax- 
ation time. Note that eq. (19) properly describes stress relaxation phe- 
nomena for n 2 2.16 

CONCLUSIONS 

The GordonSchowalter modification of the equation of motion of an elas- 
tic dumbbell element may be used to obtain explicit constitutive equations 
for the stress and polarizability tensors. The stress equation is closely re- 
lated to the semiempirical result of Spriggs and is superior in predictive c& 
pability to the equation obtained from the elastic dumbbell model. In  
many cases results are similar to those of the rigid dumbbell model. 
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